DAT11b

Made in France.
Deal with it.

Rev 0.3

Table of contents

FA oo U A I 1« PRSP 5
Concepts and Preliminary NOTICESuiii i e s e e e s e e e sabee e e s sabeeeessnreeeesnasees 5
T0E]| 14T o PSSP P PR PSSN 6
= 0 < PP 7
[aY o IO) e aF T=q=T 0 0 1=] o L PPN PP PP 7
oY= =T o o (e Yo JU U PPUPPTROt 7
o lViTe [Yo I=da- o] o[(ot AV o113 USSP 8
VBIanNK NanAIErS.....cooeiieee e e st e e e e nnreen 9
D7) Y] o1 = o | SRR 9

DAT UBIANKT Lottt ettt e et e e s eee e eeeeeeeeeeseeeseseseaeeseaeeeeseseseseseseseeeseesseseeeneeeseeneeees 9
BT T T =] o U] o) SO PUPTPPR 10
JOD MBLET .. ettt st sttt et ettt e b e sne et e reens 11
L] oYU =0 T o 13O 11

Y oL A= e Yo - SRR 12
VBIaNK CAIIDACKS «...eeeneeieieeee ettt et s be e e sar e e e enee e s reeennee s 13
COlOT STMEAMS ...ttt ettt et ettt e bt e bt e b e e e b e e s beesmeesee e en e e reenneennees 13
o] OO P PP T P PRPPOPRPPPN 14
2 TUT] o Fol - Tt (o] o F= 1= (ot =T g 3 @ 11V | PRSP 14
BUIlACNAr (FIX ROIMY) ...ttt e et e et e st e et e e sae e e st e e easaeesaeesnseesnteeenaeesenseeesaseeennes 18
(00 F=1 5 o111 ST RUURURRRRP 20
=] .= ST TP T P OTPPOP 21
ANTMATOT ettt e s a e s ara s 22

(] T T A gy 1T (< o ol TR SP 24
Command BUFFErs fOrmMatsc.uei ittt sae e e sare e 24

(] o =Y VAo 1<) i1 1T TP UUT RO PPPUR 25

S [T ol g aTe Yo LT 1= T o 1= 25

JOD MELET EFINES ...ttt et sbe e s s 25
INPUL related dEFINESeeei et e e e e e e ab e e e tae e e eabaee seeeennreeans 26
1T T Y T T o] PSPPI 28
GENEral PUIPOSE COMPONENTS....uvveiiieeeiiiiitireeeeeeeiiieitrrrereeeeeisesraeeeeeessssisrsssesesesasssreseesesesssssssssrsseees 29
MEMBYTE, MEMWORD, MEMDW ORDcccoiiiiiittiie ittt ettt e e s s snreneeee e s 29
VOIMEMBYTE, vVOIMEMWORD, VOIMEMDW ORDcottiiiiiiiiiiniieeeeeriiee e siie e ssiiee e siee e s ssiee e s 30

VRAM_SPR_ADDR, VRAM_FIX_ADDR, VRAM_SHRINK_ADDR, VRAM_SHRINK,
VRAM_POSY_ADDR, VRAM_POSY, VRAM_POSX_ADDR, VRAM_POSX......ccoovriiireiiiiiirireeeeeeene 31

LD A Lo o] a2 L RS RTROTRRRPPRRRRRRRP 32

071 1o o] oV S RURUR 33
SO d P UL e et e aeeaeaaaaeaaaaeaeens 34
SC234P UL i e s e e e e e e e e e s e s e s e e e aaeaeeaaaeaeens 35
clearFixLayer, clearFixLayer2, clearFiXLayer3........oociiiiiiiieie ettt esree e e te e e e 36
Lol T T Y o] LSRR 37
(o] o] 111 {0 PP U PP TOPRROPPROPIO 38
ENADIEIRQL. ettt ettt et s bt e s bt e e st e e s te e e be e e sabeesbeeehnbeesbeeenareena 39
TTEGEX ettt bbbttt s h e st sttt b e bt e bt e bt e s bt e sheesh e e eae e eaeeereereens 40
B[] o113 (=T 6] [o U 41
jobMeterSetup, JODMELEIrSELUPZt e e e e e et e e e e e e s arrane e e e e as 42
[oY= Yo I I 1o SRR 43
] 66 o =SSP P PP P PR URPROPOT 44
SBIUP AP i e e e e e e e e e e e e e e aaaes 45
UL oY Lo To I I 1T o PSSR 46
WRIEVBIANK .ttt ettt et st e et e e bt e e st e e st e e be e e sbe e e s bee s b areesneeesareeea 47
SErNG / TEXE COMPONENTSveeeeveeeeteee et eetee et eeeetreeeteeeeteeeeteeeeaeeeebeeeeaeeeeseeesssesssesensseeesnseeesareeans 48
VAN oo U dE d g1 o T= 38 o] s - | KIS PUTP 48
Y o111 72U 48
Y oL aT 14 TSP 49
fixPrint, fixPrint2, fiXPrint3, fIXPriNtd.......oooeeeeee e e e ae e e e 50
fixPrintf, fixPrintfl, fiXPrintf2, fIXPIriNtf3.....cooviiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeee et e e e e e aaaaaes 51
o {0] =T oo] a] o Lo] aT=T) KT TSP 52
] ot U1 = OSSO 52
[1Tt A U= [0] o J TSP T 53
1Tt A B =Y 1o [T PPRP 54
01Tt 0 | = 1o) U UUPP PR 55
PICTUNEIMIOVE . s s s s ettt bttt bttt sttt bt et ee s nnnn 56
[T To1 (0T I =1 o o [T SRS 57
PICTUIESETPOS ... e s e s e e e a s e e seseseaassseeeseseeeee nansnnnnnnnnnnn 58
o111 A B Y o o 1 YRS PP P 59
NYel go] | F=T g oloT g 0] o Yo V= o1 £ PR 60
ol o] | [T S TSSOSO PP UPIU SRR 60
SCIOIITINTO ..ttt bt e b e bt e bt e s bt e s bt e sae e e e b e e nbe e beenneas 61
Yol g0 | L= o o AR TP PTOURTUPPOPRO 62
SCIOIIEISEEPOS ...ttt ettt e ettt e st e e s b et e s bt e e s ar e e s beesbeeesabeesabe e e sneeesnreenas 63

Animated SPrit€S COMPONENTSuvviiiiieeiiecciitire e e e e e e e e e s sre e e e e e e s ssbeteeeeeeeessnsrenneeeeessnnnsenrnnns 64

F Y o]] = SRR 64
spritelnfo, anNiMStEP, SPIFIraME. ...t e e e s ae e e e srae e e e nanes 66
AP R A NIMI AT eeaaeaeaens 67
Fe Y o1 1 7= T [T PSP 68
AP NI e 69
Y o] (=11 (017 SRR 70
aSpriteSetAnim, aSPritESETANIMZ ... i e e e e e e et e e e e e aaaa s 71
aSpriteSetStep, aSPriteSetSIeP2 ... ———————— 72
aSpriteSetAnimStep, aSpriteSetANIMSIEP2cooviiiiiii s 73
Fe Y o L Y= 1o TSRS 74
ASPIIEESETPOS. ... —————— 75
Y o] g 100 aTo Y U UUPPRRRRRY 76
SPIite POOIS COMPONENTS. ...ciiiiiiiieiiiiiee ettt et e e e et e e et e e e e tre e e e s taeeeeaataeeessseeeeansseeesstaeeseeeasseees 77
R o] 111 2o To | S UUPRE 77
] o] =] ado o] {1 Lo LY I UPSRNY 78
spritePoolDrawList, spritePOOIDIraWLISt2ccceeeiiiiciiiieieeie et e e e e e e e b ree s 79
] o1 1] ado o] {11 PSS UUPPRRRRY 80
(00] (o] G (=TT 0 W elo] 0 g1 o T g =T o] 4RSS 81
(olo] (o By Ay <=1 o o TP PO P PO PPTRRTOPRRTRPO 81
colorStreamlInfo, ColOrStreamUob ... e e rae e 82
(ol] o] 5] (=104 1 o 1 S ST PP PP UROROPTO 83
COlOTSTIEAMSELPOS ...ttt ettt s e s e st eear e et e esneesnees 84

About DATIib

DATIib is a library designed for the NeoBitz/NeoDev environment.
It is designed to replace libvideo and libinput from the original kit.

Its goal is to provide easy functionality trough base elements (scroller, picture and animated sprite)
which you are prone to use in your software, and allow better performance than basic libraries while
writing less code.

Tools are also improved over standard ones to allow more colors (no longer limited to one palette per
object), auto animation support, smaller data...

Combined tools and library allow easier coding while providing better performance and easy syncing
between vblank and sprites update, greatly reducing tearing issues.

Concepts and preliminary notices

First of all, there is a quick demo program provided in the archive with source code, which you can
explore and play along with to get familiar with the library and tools, or use as a stepping stone for your
project.

DATIib will occupy about 10KB of the system ram.

The main outline of how this library works is that graphic updates are queued into buffers (also called
draw lists / command buffers) that are processed during vblank. There is currently four command
buffers: tiledata commands buffer (SC1 buffer, VRAM 0x0000 — Ox6FFF operations), sprites control
commands buffer (SC234 buffer, VRAM 0x8000- 0x85FF operations), palette jobs commands buffer
(PALJOBS buffer, palette ram operations) and fix jobs command buffer (FIXJOBS buffer, fix layer
operations). This means you can -for example- update a sprite position anywhere in your code, it will
automatically be synced with and updated during next vblank.

Many components of this library evolve around the concept of base sprite and base palette:

Base sprite designates the starting sprite to use for said element. As an example a 4 tiles width picture
with base sprite set to 10 will therefore use sprites #10 #11 #12 #13 to display.

Base palette is basically the same concept as base sprite, applied to color palettes.

It is currently up to the user to manage sprites and palettes to make sure no overlaps occurs across
different elements.

Installation

Requirements: main NeoBitz dev package is required, make sure it is correctly installed and set up.

T K

To install required files, merge the content of the archive’s “NeoDev” folder with your current NeoDev
installation.

DATIib is designed to supersede libvideo and libinput, make sure your remove those from your linker
options in your project makefile and add DATIib library (remove -1video and -1input, add -1DAT1ib).

IE:
LIBS

-lvideo -linput -lprocess -lc -lgcc
becomes
LIBS

-1DAT1ib -1process -1lc -1lgcc

Add <input.h> and <DAT1ib.h> in your program includes.
If you use BuildChar to convert your data into tilemaps (most likely you will), also add the .h files made
by it to your project.

Use the provided common_crt@_cart.s and crt@_cart.s file for your project, replacing older ones.
(common_crt@_cd.s and crt@_cd.s for CD projects).

Features

Input management

As standard 1ibinput is dropped when installing DATIib, input defines are provided in the new input.h
include file. Input values can be read with the volMEMBYTE () macro from the BIOS memory region.

Support is provided for mahjong controllers as well as 4P adapters, check library reference section for
available defines.

Example:

#include <input.h>

uchar p1;

pl=volMEMBYTE(P1_CURRENT); /* get current status of P1 */
if(pl&IOY_A) { /* button A pressed ? */

, .

Program loop

Using the library requires using a defined program flow for everything to work together.

While there are many ways to arrange code and use functionalities, here is a sample, basic program
loop:

initGfx(); //initialize library components
/* initialize scroller, pictures etc.. */
SCClose(); //we done initializing
while(1) {
waitVBlank(); // wait vblank
// screen updates will occur during vblank

/* do stuff */

SCClose(); //we done updating stuff
//loop for vblank sync and screen update

Provided graphics types

DATIib provides three base graphical elements that should fulfill most needs:

picture

- simple picture type

- allows display, positioning and flipping of static pictures

- when setting picture position, you are setting top left pixel position

- uses picture tile width sprites (ie: 64px width picture = 4 tiles width = 4 used sprites)
scroller

- type used to display a scrolling plane

- 8 way scrolling ability

- no map size limit

- uses 21 sprites, regardless of plane dimensions

animatedSprite

- provides support for animated sprites

- allow display, positioning, flipping and animating sprites

- animation system supports repeats and animation linking

- up to 65536 animations, unlimited animation steps

- Allocated mode / Sprite pool mode

- used sprites depends on currently displayed frame. If using allocated mode, good practice
is to plan enough sprites to fit the widest frame

Note: Animated sprites uses a different way to position themselves. Each frame location is relative to a
fixed reference point. This is due to the nature of animations, often using a set of frames of different
sizes and alignments (to avoid encasing a few pixels in a large picture frame, saving space and CPU
time). Positioning operations on animated sprites refer to positioning the reference point. Flipping
animated sprites is done around the reference point. It is possible to revert back to a more classic
cpprdinates system by using the strict coordinates flag.

Vblank handlers

Vblank handlers are interrupt handlers provided by the library, required for proper operation. Those have
to be set up as your vertical interrupt (IRQ2) vector.

DAT_vblank

Standard vblank handler.
Operation:

- sets job meter to red

- process tiledata buffer

- process sprites control buffer

- process palette jobs buffer

- process fix jobs buffer

- sets job meter to orange

- resets draw lists, updates frame counter
- checks and process debug dips

- acknowledges IRQ, kicks watchdog, calls SYSTEM_IO (BIOS)
- sets job meter to green

- returns

Note: Job meter colors are only updated under select circumstances, see debug dips section.

DAT_vblankTI

Vblank handler with timer interrupt support.
Operation:

- Load base and reload timing values (if timer interrupt enabled)
- Branch to DAT_vblank for standard operations

Notes: When using timer interrupts, requested LSPC mode must be written to the LSPCmode variable
(ushort). This is due to the LSPC mode hardware register being manipulated to set timer values,
therefore needing a reference value of requested settings to preserve them. If using standard vblank
handler, the LSPCmode variable will be ignored and therefore you must write directly to the register when
needed.

When using timer interrupts, user must use IRQ safe versions of functions when available.
Thoses are slightly slower than the regular ones but are required to avoid VRAM corruption by interrupts.

Timer interrupt

Base functionality is provided for timer interrupts, allowing to change one or two VRAM value on every
(or select set of) scanline.

To enable timer interrupt functionalities:

- set DAT_vblankTI as your vblank IRQ vector
- set DAT_TIfunc as your timer IRQ vector

Notes: make sure you set variable TinextTable (uint) to O before enabling IRQ when using timer
interrupt. This is done in the default init code, but make sure to keep it if customizing files. Timer interrupt
related code uses the USP register, make sure you code doesn’t conflict.

Using timer interrupt:

To work with timer interrupt you need to prepare data in a WORD table, storing VRAM address and data
combos.

Format for the data table is:

- VRAM address n (1 ushort)

- VRAM data n (1 ushort)

- VRAM address n+1 (1 ushort)

- VRAM data n+1 (1 ushort)

- (ete...)

- end marker (2 ushort, 0x0000 0x0000)

For correct behavior it is required to use two alternating tables. One table for currently displaying frame,
another one to prepare data for next frame.

Timer IRQ function must be set up with 1oadTIirq() prior to use.

Timer IRQ is available for single and dual data writes for each triggering. See loadTIirq() section.

Startup timer interrupt:

- set base and reload timers
- put pointer to data table for next frame in the TinextTable variable

Stop timer interrupt:

- set TInextTable to null (0)

Notes: When data last value is processed, the timer interrupt will be disabled for the rest of the frame
until next vblank. This avoids triggering unnecessary IRQ, as they are CPU consuming. Default timer
values are provided for first raster line triggering and each line repeat: TI_ZERO and TI_RELOAD. Timer
interrupt will be disabled if TinextTable is null. Timer interrupt will be disabled if first table entry is end
marker.

10

Job meter

Base job meter support is provided by the library.

Job meter allows basic profiling of your code, by having a visual representation of how much CPU time
is used. Using different colors lets you observe CPU usage of every procedure, allowing targeting of
things to optimize.

Job meter example:

Green color: free CPU time

Blue color: animation procedures

Red color: vblank sprites updates
Orange color: post vblank SYSTEM_IO

Note: Setting job meter colors during active display will issue a pixel of said color on screen (on real
hardware). This is an issue with the hardware that can’t be avoided, therefore make sure to use job
meter in debug builds only.

Debug dips

Some of DATIib features are enabled through debug dips. Enable dev mode into bios then set the
requested dips to 1.

Debug dip 2-1

Enable vblank job meter color updates.

Vblank interrupt will color draw buffers processing as red job, and post jobs like SYSTEM_IO in
orange.

Debug dip 2-2
Displays current raster line # when draw buffers are done being processed.

Debug dip 2-3
Displays a rough usage meter for SC1 and SC234, FIXJOBS and PALJOBS buffers

Debug dip 2-4 ~2-8
Unused / reserved future use.

11

Sprite Pools

Sprite pools are an alternate way to handle sprites rendering. It consists of a reserved sprites batch
which is then used to display assets.
This technique is reminescent of double buffering, but using sprites.

It differs from the previous basic, “allocated” draw mode by many ways:

- Sprite tilemap/position data is written during active frame, alleviating vblank load

- Sprite tilemap/position data is fully rewritten every frame

- Removes the need to manage baseSprite from aSprite handles, they are drawn in the order
they are submitted

- Submit order drawing allows for easier sprites sorting/priority change

- No baseSprite management means less sprite loss, when current frame is smaller than the
maximum reserved space

Base operation sketch

A spritePool entity must be initialized providing a pool size (# of sprites) and a starting position for
this pool (baseSprite). Pool size should be aimed at twice the size of an average scene. If an average
frame requires 80 sprites, ideally allocate 160.

To draw into the sprite pool, user must submit an array of pointers to aSprite handles, followed by a
null pointer end marker.

Drawing in the sprite pool alternates way every frame (WAY_UP/WAY_DOWN). When going UP, pool
uses sprites from pool start toward pool end, when going DOWN, from pool end toward pool start.
User must supply the top or bottom end of the pointer array, to fit needs.

Tilemap and X position data is written into vram during active display, Y position is updated during
vblank.

In case of heavy load, it is possible the sprite needs overlaps with the currently used sprites from
previous frame. In this case overlapping sprite needs are queued for update during next vblank:

frame N used sprites (currently on screen, DOWN way)
frame N+1 sprites, drawn immediately (UP way)

- frame N+1 overlapping sprites, queued for vblank drawing

This provides a failsafe and user transparent operation in most scenarios, however exceeding the
total pool side will lead to unexpected results and adjacent sprites corruption.

Note: As sprite pools are designed to update VRAM during active frame, this feature isn’t interrupt
safe (using it alongside timer innterrupt can corrup VRAM info).

12

Vblank callbacks

Vblank callback function are available by using the supplied pointers:
- VBL_callBack: callback pointer to function to be called after a regular Vblank
- VBL_skipCallBack: callback pointer to function to be called after a skipped frame Vblank

Callback functions are called at the very end of the Vblank interrupt procedure and after SYSTEM_TIO
occurred.

As all registers (except for A7) are restored when the callback function returns, user can trash them
without caring about saving them.

Color streams

When creating a large background plane, an issue can arise with color palettes being too numerous to
fit withing the available ressources.

Color streams are provided as a solution, allowing the streaming color data into palette RAM as scrolling
advances.

When requesting a color stream from buildchar, orientation must be specified (horizontal/verttical) to
indicate scan orientation. Scanning along the largest axis will usually provide the best results. IE a
“landscape” orientation scroller should be using horizontal parameter.

When initializing a color stream, user can choose to load the start or end configuration, matching palettes
state at start or end of scroller. It is advised to initialize streams with the configuration matching the

scroller position the closest.

Once initialized user can request streams to advance to select position, required palette jobs will be
buffered and processed on next Vblank.

Note: Be wary of large jumps in scrollers when using color streams, as it could induce a lot of palettes
shuffling and possibly overflows the available palette jobs buffer.

13

Tools

Buildchar (character ROM)

Command line tool used to convert your graphics elements into tiles, tilemaps and palettes.

Input
- chardata.xml

Contains description of assets to include into tile data.

Example chardata.xml file:

<?xml version="1.0" encoding="UTF-8" ?>
<chardata>
<setup>
<starting_tile fillmode="dummy">256</starting_tile>
</setup>

<scrl id="ffbg _b">
<file>gfx\ffbg_be.png</file>
<autol>gfx\ffbg_bl.png</autol>
<auto2>gfx\ffbg_b2.png</auto2>
<auto3>gfx\ffbg_b3.png</auto3>
</scrl>

<pict id="ffbg c">
<file>gfx\ffbg_c.png</file>
<flips>xyz</flips>

</pict>

<sprt id="bmary_spr">
<file>gfx\bmary.png</file>
<flips>xyz</flips>
<frame>0,0:4,7</frame>
<frame>4,0:4,7</frame>
<frame>8,0:4,7</frame>
<frame>12,0:4,7</frame>
<frame>16,0:4,7</frame>
<frame>20,0:4,7</frame>
<frame>24,0:4,7</frame>
<frame>28,0:4,7</frame>
<frame>32,0:4,7</frame>
<frame>36,0:4,7</frame>
<frame>40,0:4,7</frame>
<frame>44,0:4,7</frame>

</sprt>

</chardata>

Nodes details:

0 <setup>
Contains general settings:

<starting_tile>

Defines starting tile # (decimal). Used to leave blank tiles at the beginning
of the char.bin file, useful if you need room to fit things like a character font
at the beginning of the tileset. Additional parameter fillmode (none/dummy)
defines if skipped tiles are to be filled or not.

<charfile>

Defines output character file name. Optional, defaults to “char.bin”.
<mapfile>

Defines output tilemaps data file name. Optional, defaults to “maps.s”.
<palfile>

Defines output palettes data file name. Optional, defaults to “palettes.s”.
It's possible to use same name as mapfile, to merge data in the same file.
<incfile>

Defines output include file name. Optional, defaults to “externs.h”.

0 <import>
Used to import binary data. Will copy the raw binary data into the output file.
File size must be multiples of 128 bytes (single tile size).

o0 <scrl>

<file>
Binary file to import.

Used to declare a scroller

0 <pict>

id (attribute)

Literal name the scroller will be referenced by in C code.

colorStream (attribute)

Set this attribute to “horizontal” or “vertical” value to generate colorStream
data for this scroller.

<file>

PNG file of the display area.

<autol> to <auto7>

Additional pictures when using auto animation features.

Used to declare a picture

id (attribute)

Literal name the picture will be referenced by in C code.
<file>

PNG file of the picture.

<flips>

Flip modes wanted for this picture (optional).

X = horizontal flip

Y = vertical flip

Z = horizontal & vertical flip

15

0 <sprt>

Used to define an animated sprite

id (attribute)

Literal name the animated sprite will be referenced by in C code.

<file>

PNG file containing all animation frames.

<flips>

Flip modes wanted for this animated sprite (optional).
X = horizontal flip

Y = vertical flip
Z = horizontal & vertical flip
<frame>

Defines a frame, format is: top,left coordinate:width,height
Unit is tile (16px)
See Framer tool section to easily set up frames

16

About input files format:
Picture files used in chardata.xml must be PNG format, 32bppArgb. Define transparency by pink color
(#ffOOff), or simply use transparency. Size must be multiples of 16.

About colors:

There is no limits color wise, as long as each tile is transparency + 15 colors max, you can use pics with
hundreds of colors.

If your file is rejected for using too many colors per tile, erroneous tiles will be shown in a reject.png file.

About ID:
Each declared entity will generate an extern C object named <id>, as well as a palettes object named
<id>_Palettes.

Output

- char.bin
Your tile data, linear binary output.
Convert to cart or CD format if needed by using the CharSplit tool.

- maps.s
Tilemaps data, add to makefile to compile and link into your project.

- palettes.s
Palettes data, add to makefile to compile and link into your project.

- externs.h
Extern definitions of your data. Include into your C program to use data.

Mixing auto4 and auto8 tiles

It is possible to mix up auto4 and auto8 tiles on the same file when using auto animation. To do so, use
the supplied auto4 marker tile (auto4_tile.png) on your <auto4> file to designate an auto4 tile.

Tile distribution across mixed up files is as follow:

<file> <auto1> | <auto2> | <auto3> | <auto4> | <auto5> | <auto6> | <auto7>
. . . . End
Auto4 Tile #0 Tile #1 Tile #2 Tile #3 ---- Ignored data ----
marker
Auto8 Tile #0 Tile #1 Tile #2 Tile #3 Tile #4 Tile #5 Tile #6 Tile #7

17

Buildchar (fix ROM)

Buildchar can also be used to generate FIX ROM character data.
Use the fileType="fix” tag inside the setup node to specify a FIX ROM file.

Fix data is split into 16 “banks” of 256 characters.

Input pictures must be sets of 256 characters forming a 128px*128px area bank.

Picture can contain multiple character sets, however layout must remain 128px height and 128px
multiples width.

You can load multiple pictures in the same bank. As they will be merged together, make sure data
doesn’t overlap.

Please note buildchar doesn’t optimize character data, as characters location is very often a
programmer’s choice (fonts needing to be at set position, specific health bar setup, etc...).

In the same manner, there is no tilemap data output. You have to write the data fitting your needs (see
16bit strings format and fixJobPut).

Input
- fixdata.xml

Contains description of assets to include into fix data.

Example fixdatadata.xml file:

<?xml version="1.0" encoding="UTF-8" ?>
<chardata>
<setup fileType="fix">
<charfile>out\fix.bin</charfile>
<palfile>out\fixPals.s</palfile>
<incfile>out\fixData.h</incfile>
</setup>

<import bank="0">
<file>gfx\fix\systemFont.bin</file>
</import>

<fix bank="3" id="fix_font">
<file>gfx\fix\font@.png</file>
</fix>
</chardata>

18

Nodes details:

(0]

(0]

<setup>
Contains general settings:

<charfile>

Defines output character file name. Optional, defaults to “char.bin”.
<palfile>

Defines output palettes data file name. Optional, defaults to “palettes.s”.
It's possible to use same name as mapfile, to merge data in the same file.
<incfile>

Defines output include file name. Optional, defaults to “externs.h”.

<import>

Used to import binary data. Will copy the raw binary data into the output file.
This can be used to import a standard system font.

File size must be multiples of 32 bytes (single character size).

<fix>

Bank (attribute)
Destination bank #.
<file>

Binary file to import.

Import a characters set

Bank (attribute)

Destination bank #.

id (attribute)

Literal name for the palette data that will be referenced by in C code.
<file>

PNG file of the characters data.

19

Charsplit

Command line tool used to convert raw character data issued by buildchar to either cart or CD format
files.

Usage:

charSplit [input_file] <options> [output_file prefix]

Options:
-cart Ouput to cart format ([output_file prefix].cl & .c2)
-cd Output to CD format ([output file prefix].cd)
Example:

charsplit char.bin -cart game

will split char.bin into game.c1 and game. c2 files for cart system use.

20

Framer

Tool used to delimit animated sprites frames.
Each animated sprite must be assigned a set of frames before being processed by the buildchar tool.

Input
- chardata.xml

Click the open button and select the xml file containing reference to your animated sprites
assets.

Output

- chardata.xml
Click the save button to update xml file with the new/updated frames.

Usage:

- -
B8 C\NeoDew\DATdemo_\chardataxml - DATIb's Framer BN

= E Scale: 100% - gy

« Sprites

[bmary_spr -]

Frames - bmary_spr

pos X pos Y width height o
32 0 4 7
36 0 4 7
40 0 4 7
44 0 4 7
a 7 4 7 F
4 7 4 7
8 7 4 7
12 7 4 7
16 7 4 7 3
20 7 4 7
24 7 4 7
28 7 4 7

i Add selected frame]

Mask color - E U
4 Frame color - E U

Framer is very straightforward to use. Open your xml file, then select the animated sprite you want to
work with from the drop down menu.

If the xml file already contains data, existing frames will be listed to be updated/removed.

To add a new frame, simply select it by clicking and dragging mouse, then click the add button, or
press the space bar.

When done, click save to update the xml file, which is then ready to use with buildchar for processing.

21

Animator

Tool used to animate animated sprites.
Each animated sprite you process with the buildchar tool must be assigned at least one animation with
the animator tool for proper compilation and linking of your project.

Input

When defining an animated sprite, buildchar will output a subfolder containing frames cutouts. Open
this folder in Animator.

- animdata.xml
This is your save file regarding this animation. If found inside folder, animator will load it.

Output

- animdata.xml
This is your save file regarding this animation. Hit save button to save your work.

- <id>_anims.s
Animations file, this should already be an include in your maps. s file by buildchar tool.

- <id>.h

Contains animations C defines, should already be included in your externs.h file by buildchar
tool.

Using Animator:

Main window is divided into 3 areas

~
i C:\NecDeviDATdemo_‘\gfx\bmary_spr - DATIib's Animator El_l—l
) [E & Scale: 400% . @

- Sprite data
bmary_spr_0009 4 | Frame details

bmary_spr_000b - Width: 64 pu (4 tiles)
bmary so y Height: 112 px (7 tiles)
bmary_spr_000d £

bmary_spr_000=
bmary_spr_000F
bmary_spr_0010
bmary_spr_0011
bmary_spr_0012
bmary_spr_0013

m

m

Animations | Steps - IDLE | 6,

Animation details

1D: BMARY_SPR_ANIM_IDLE

IDLE Steps: 12 Total timing: 72 frames
WALK
Repeats: 0 ftimes played = 1 + repeats)
Linksto: |[IDLE =

Play repeats / links
Playback loop

22

@ Preview area

This area allows you to visually align frames and preview animations. Change scale for better viewing.
Reference point is visualized by the intersection of the two red axes. When setting position of
animated sprites in your code, you are setting the position of this reference point.

@ Sprite and frames data area

This area will list and provide a quick preview of all the frames you created using the framer and
buildchar tools, making sure you exported them correctly.

© Animations area
This is the main section to edit and check animations

Adding an animation: Input animation name in text field and press the [Add] button, the new animation
will appear in the animations list.

Edition an animation: Select the animation you want to edit in the animations list. Input repeat count and
link data for selected animation. Repeats are the number of times the animation will be repeated after
initial play. Link allows you to branch to another animation once current animation is done displaying
(including repeats). You can link an animation to itself to create a loop. If no link is selected the last
animation frame will remain of screen after animation is done.

From there on, double click on frames in frames list to add animation steps.

You will have to input frame position for each step (X & Y field, or arrow buttons) as well as step timing
(T field). Timing is the number of display frames the selected step remains on screen. Mod all steps
checkbox will allow you to edit all steps at the same time.

You can adjust steps order or delete steps by using buttons under the steps list.

Animations IDs

Each animation created with the animator tool will generate a C define that can therefore be used when
setting animations.

Format is <id>_ANIM_<animation name> (all uppercase).

As an example, building animations named WALK and IDLE for animated sprite defined with ID
“‘mycharacter” will generate MYCHARACTER_ANIM_WALK and MYCHARACTER_ANIM_IDLE defines.

Exporting data

Use the [Export] button in the toolbar to export animation data into your project for compilation/linking.

Keyboard shortcuts

Shift + arrow keys: move frame of currently selected step
Space bar: start/stop current animation playback

23

Library reference

Command buffers formats

SC1 buffer
Each SC1 buffer entry is two 32bit uint:
31-24 23-18 17-16 15-0
Palette mod Tile count 00 VRAM address
31-0

Tile data address

Buffer has a ©x00000000 end marker.

SC234 buffer

Each SC234 buffer entry is two 16bit ushort:

15-0

VRAM address

15-0

VRAM data

Buffer has no end marker (size is computed from SC234ptr value).

PALJOBS buffer

Each PALIJOBS buffer entry is two 32bit uint:

31-16 15-5 4-0
Palettes count-1 Palette number 00000
31-0
Palette data address

Buffer has a oxffffffff end marker.

FIXJOBS buffer

Each FIXJOBS buffer entry is two 32bits uint:

31-16 15-12 11-8 7-0
VRAM address Palette # 0000 VRAM modulo
31-0
FIX data address

Buffer has a 0x00000000 end marker.

24

Library defines

Flip modes defines
Flip modes used for graphical elements to define orientation.

Flip modes

FLIP_NONE unflipped

FLIP_X horizontal flip

FLIP_Y vertical flip

FLIP_XY horizontal and vertical flip
FLIP_BOTH horizontal and vertical flip

Job meter defines
Basic colors used for job meter

Colors

JOB_BLACK

JOB_WHITE

JOB_LIGHTRED JOB_LIGHTGREEN
JOB_RED JOB_GREEN

JOB_DARKRED
JOB_LIGHTBLUE
JOB_BLUE
JOB_DARKBLUE
JOB_LIGHTCYAN
JOB_CYAN
JOB_DARKCYAN
JOB_LIGHTORANGE
JOB_ORANGE
JOB_DARKORANGE
JOB_LIGHTGREY
JOB_GREY
JOB_DARKGREY

JOB_DARKGREEN
JOB_LIGHTPURPLE
JOB_PURPLE
JOB_DARKPURPLE
JOB_LIGHTYELLOW
JOB_YELLOW
JOB_DARKYELLOW
JOB_LIGHTPINK
JOB_PINK
JOB_DARKPINK

25

Input related defines
Defines used to read controller data and check button presses.
All data registers are byte size.

Hardware registers

P1_HW hardware controller port 1 (negative logic)
P2_HW hardware controller port 2 (negative logic)

Bios registers

P1_STATUS player 1 status

P1_PAST player 1 previous frame data
P1_CURRENT player 1 current data
P1_EDGE player 1 active edge data
P1_REPEAT player 1 repeat data
P1_TIMER player 1 repeat timer
P2_STATUS player 2 status

P2_PAST player 2 previous frame data
P2_CURRENT player 2 current data
P2_EDGE player 2 active edge data
P2_REPEAT player 2 repeat data
P2_TIMER player 2 repeat timer
P1B_STATUS player 3 status

P1B_PAST player 3 previous frame data
P1B_CURRENT player 3 current data
P1B_EDGE player 3 active edge data
P1B_REPEAT player 3 repeat data
P1B_TIMER player 3 repeat timer
P2B_STATUS player 4 status

P2B_PAST player 4 previous frame data
P2B_CURRENT player 4 current data
P2B_EDGE player 4 active edge data
P2B_REPEAT player 4 repeat data
P2B_TIMER player 4 repeat timer
PS_CURRENT current select/start data
PS_EDGE active edge select/start data

Controller types (status byte value)

CTRL_NOCONNECT not connected

CTRL_STANDARD standard controller
CTRL_EXPANDED expanded controller (4P mode)
CTRL_KEYBOARD keyboard

CTRL_MAHJONG mahjong controller

26

Controller positions

JOY_UP
JOY_DOWN
JOY_LEFT
JOY_RIGHT
JOY_A
JoY_B
JOY_C
JOY_D

P1_START
P1_SELECT
P2_START
P2_SELECT
P1B_START
P1B_SELECT
P2B_START
P2B_SELECT

lever up
lever down
lever left
lever right
A button

B button

C button

D button

player 1 start button (select/start register)
player 1 select button (select/start register)
player 2 start button (select/start register)
player 2 select button (select/start register)
player 3 start button (select/start register)
player 3 select button (select/start register)
player 4 start button (select/start register)
player 4 select button (select/start register)

Mahjong controller related

P1_JONG_A G
P1_JONG_H_N
P1_JONG_BTN

P2_JONG_A_G
P2_JONG_H_N
P2_JONG_BTN

JONG_A
JONG_B
JONG_C
JONG_D
JONG_E
JONG_F
JONG_G
JONG_H
JONG_I
JONG_J
JONG_K
JONG_L
JONG_M
JONG_N
JONG_PON
JONG_CHI
JONG_KAN
JONG_RON
JONG_REACH

player 1 mahjong data, A-G buttons
player 1 mahjong data, H-N buttons
player 1 mahjong data, action buttons

player 2 mahjong data, A-G buttons
player 2 mahjong data, H-N buttons
player 2 mahjong data, action buttons

A button

B button

C button

D button

E button

F button

G button

H button

| button

J button

K button

L button

M button

N button
PON button
CHI button
KAN button
RON button
REACH button

27

Library variables

General variables

uint DAT_frameCounter
uint DAT_droppedFrames
uint *VBL_callBack

uint *VBL_skipCallBack
uint SC1[760]

uint *SClptr

ushort SC234[2280]

ushort *SC234ptr

uint PALJOBS[514]

uint *palJobsPtr;

uint FIXJOBS[129];

uint *fixJobsPtr;

uchar DAT_scratchpad64[64];
uchar DAT_scratchpadl6[16];

Timer interrupt related variables

frame counter

dropped (skipped) frames counter
VBlank callback function pointer
VBIlank callback function pointer
(skipped frame)

draw list for tilemap data

pointer to tilemaps data draw list
draw list for sprite control

pointer to sprites control draw list
palette jobs buffer

pointer to palettes jobs buffer

fix jobs buffer

pointer to fix jobs buffer

64 bytes scratchpad
16 bytes scratchpad

ushort LSPCmode

uint TIbase

uint TIreload
ushort *TInextTable
ushort Tivalues@[256]
ushort TIvaluesl1[256]

requested LSPC mode

timer interrupt timing to first trigger
timer interrupt reload timing

pointer to data table to use next frame
timer interrupt data space 0

timer interrupt data space 1

28

General purpose components

MEMBYTE, MEMWORD, MEMDWORD

Direct memory access macros.

Syntax
MEMBYTE(address)
MEMWORD(address)
MEMDWORD(address)

Explanation
Macros that can be used to directly access a memory address or hardware register.
Available for byte, word and dword operation.

Ex:
i=MEMWORD (©x3c0006) ; /* reads LSPC mode register into i */

MEMBYTE (0x300001)=1; /* kicks watchdog */

Note: 68000 requires even addresses when operating on word (short - 16bit) and dword (in - 32bit)
data. Read/write operation at an odd address for a word/long will crash the CPU.

Return value
N/A

29

volIMEMBYTE, voIMEMWORD, voIMEMDWORD

Direct memory access macros, volatile declaration.

Syntax
volMEMBYTE(address)
volIMEMWORD(address)
volIMEMDWORD(address)

Explanation

Macros that can be used to directly access a memory address or hardware register.
Available for byte, word and dword operation.

Theses macros are defined with the volatile keyword.

Ex:
i=volMEMWORD(0x3c0006); /* reads LSPC mode register into i */

VO1MEMWORD(©x300001)=1; /* kicks watchdog */

Note: 68000 requires even addresses when operating on word (short - 16bit) and dword (in - 32bit)
data. Read/write operation at an odd address for a word/long will crash the CPU.

Return value
N/A

30

VRAM_SPR_ADDR, VRAM_FIX_ADDR, VRAM_SHRINK_ADDR,
VRAM_SHRINK, VRAM_POSY_ADDR, VRAM_POSY,
VRAM_POSX_ADDR, VRAM_POSX

Misc macros for VRAM address calculations and data formating.

Syntax

VRAM_SPR_ADDR1(sprite_number) Sprite tilemap address
VRAM_FIX_ADDR(X_position, Y_position) Fix address for character at posion x,y
VRAM_SHRINK_ADDR(sprite_number) Sprite shrink coefficient address
VRAM_SHRINK(H_shrink, V_shrink) Sprite shrink values
VRAM_POSY_ADDR(sprite_number) Sprite Y position address
VRAM_POSY(Y_position, link, sprite_size) Sprite Y position value
VRAM_POSX_ADDR(sprite_number) Sprite X position address
VRAM_POSX(X_position) Sprite X position value

Explanation
Eases up syntax when handling VRAM values.

Related defines (Y position link value):
SPR_LINK (0x0040)
SPR_UNLINK (0x0000)

Ex: Moving sprite #16 to X position 120:
SC234Put(VRAM_POSX_ADDR(16), VRAM POSX(120));

Return value
N/A

31

fixJobPut

Writes a command into fix jobs buffer. Macro.

Syntax

fixJobPut(
ushort x, Target X position on fix layer
ushort y, Target Y position on fix layer
ushort mod, VRAM modulo
ushort pal, Base palette
ushort* data) Pointer to fix data

Explanation
Macro allowing user to put a fix job into fix jobs buffer.

Return value
N/A

32

palJobPut

Writes a command into palette jobs buffer. Macro.

Syntax

palJobPut(
ushort number, Destination palette number (0-255)
ushort count, Number of palettes to write
ushort* data) Pointer to palette data start

Explanation

Macro allowing user to put a palette job into palette jobs buffer.

Return value
N/A

33

SC1Put

Writes a command into tilemap data draw buffer. Macro.

Syntax
SC1Put(
ushort addr, Destination address in VRAM
ushort size, Tile count
ushort pal, Base palette
ushort* data) Pointer to tilemap data
Explanation

Macro allowing user to put a tilemap command into tilemap data draw buffer (VRAM sprite control
block 1).

Maximum valid size is 32 tiles.

Return value
N/A

34

SC234Put

Writes to the sprite control draw buffer. Macro.

Syntax

SC234Put(
ushort addr, Destination address in VRAM
ushort data) Data

Explanation

Macro allowing user writes into the sprite control draw buffer (VRAM sprite control blocks 2 3 & 4).

Whilst designed for sprite control, the usage can be expanded to write any ushort data to any VRAM
address.

Return value
N/A

35

clearFixLayer, clearFixLayer2, clearFixLayer3

Clears the fix layer.

Syntax

void clearFixLayer()
void clearFixLayer2()
void clearFixLayer3()

Explanation

Clears the display fix layer.

Clearing is done with tile 0x0ff, make sure it is transparent in your fix data (it will be if using the standard
system font).

Totally wipes the fix data, unlike bios FIX_CLEAR function which leaves black bars.

Notes:
- clearFixLayer operates immediately, not on next vblank
- clearFixLayer performs VRAM operations and therefore isn’t IRQ safe
- clearFixLayer2 is an IRQ safe version of clearFixLayer
- clearFixLayer3 uses fix command buffer, clear will be performed during next Vblank

Return value
N/A

36

clearSprites

Clears a set of sprites.

Syntax
void clearSprites(

ushort spr, First sprite to clear

ushort count) Number of sprites to clear, from starting sprite
Explanation

Clears a block of sprites from spr to spr+count-1.
Sprite clearing is done by unlinking it, setting a 0 size and position it offscreen. Tiledata, shrink values
and X position aren’t affected.

Return value
N/A

37

disablelRQ

Disables IRQ on the system.

Syntax
void disablelRQ()

Explanation

IRQ will no longer be triggered after calling this function.

Disables both IRQ1 and IRQ2.

Return value
N/A

38

enablelRQ

Enables IRQ on the system.

Syntax
void enablelRQ()

Explanation

IRQ will be active after calling this function.

Enables both IRQ1 and IRQ2.

Return value
N/A

39

initGfx

Initialize the library for graphics operations.
Syntax
void initGfx()

Explanation
Resets and sets up library for operation.
Calling this function is required before using the library.

The function notably resets frame counters and unloads timer interrupt function.

Return value
N/A

40

jobMeterColor

Changes current jobmeter color.

Syntax
void jobMeterColor(
ushort color) Requested color

Explanation
Macro used to change job meter color to differentiate code segments execution timing.

Return value
N/A

41

jobMeterSetup, jobMeterSetup2

Sets up the job meter.

Syntax
void jobMeterSetup(

bool setDip) Automatic soft dip setting
void jobMeterSetup2(

bool setDip) Automatic soft dip setting
Explanation

Draws the job meter of the fix layer, using fix tile 0x000 and palette Oxf. Make sure that tile is a plain
color #1 tile in your fix data for proper display (it will be if using the standard system font).

Job meter takes place on the far right column of the fix layer.

For the job meter to be updated during vblank, devmode and soft dip 2-1 must be on.

Call function with setDip parameter set to true for the function to force bios devmode setting and soft
dip 2-1 to on. This basically saves you from enabling them again manually on each boot.

jobMeterSetup2 is an IRQ safe variant of jobMeterSetup.
Note: Forcing bios setting is kind of a hack job, it isn’t guaranteed to work on all bios (tested ok on

debug bios and uinibios 3.2), try out and use accordingly. Do not use in release code.

Return value
N/A

42

loadTlirq

Loads timer interrupt handler.

Syntax
void loadTlirq(
ushort mode) IRQ mode

Explanation
Loads the required code to process the timer interrupt.

Two modes are available:
- TI_MODE_SINGLE_DATA: One VRAM change per interrupt
- TI_MODE_DUAL_DATA: Two VRAM changes per interrupt

Return value
N/A

43

SCClose

Readies draw data for display.

Syntax

void SCClose()

Explanation

Closes draw lists and prepare system for next vblank.

SCClose will allow draw lists to be processed upon next VBlank and therefore need to be called before

waitVBlank, or the library won’'t update display and will issue a frameskip.

Return value
N/A

44

setup4P

Initialize 4P input mode.

Syntax
int setup4P()

Explanation
This function will check if a 4P adapter (NEO-FTC1B / NEO-4P) is hooked to the system.
It should enable 4 players mode on any bios if hardware is found.

Return value
0 - adapter was not found
1 - adapter was found

45

unloadTlirq

Unloads timer interrupt handler.
Syntax

void unloadTlirq()
Explanation

Unloads the required code to process the timer interrupts.

This actually loads a failsafe handler (acknowledge IRQ then return), shall a timer interrupt occur when
unexpected.

Note: make sure you set TinextTable to 0, then wait for a VBlank to occur before using
unloadTIirq() to avoid unstable behavior.

Return value
N/A

46

waitVBlank

Waits for next vblank.

Syntax

void waitVBlank()

Explanation

Holds program execution until next vblank is triggered.

Program will resume after the vblank function has been processed.

Return value
N/A

47

String / Text components

About string formats

Text functions can handle two string formats: 8 or 16 bits.
8 bits format: Standard 8 bits character encoding for general purpose use. Ends with a 0x00 character.

16 bits format: 16 bits character encoding aimed for display on fix layer, using VRAM character format.

15-12 11-8 7-0
Palette number Character code MSB * Character code LSB
* Character code MSB can be referenced as “bank”.

16 bits strings ends with a 0x0000 character.

sprintf2

Formats a text string.

Syntax
ushort sprintf2(
char *dest, Pointer to destination buffer
char *format, Pointer to format string
...) Extra arguments
Explanation

Will process the format string and arguments, writing the result into the dest buffer.
This is a streamlined and tweaked alternative to the standard sprintf function, allowing faster
execution.

Available format tags:

%d: prints an signed integer, decimal format

%u: prints an unsigned integer, decimal format

%x: prints an integer, hex format

%c: prints a 8 bit character

%s: prints a string

%0: pads the following argument with zeros
Ex: %08x will print an integer in hex fomat, with a 8 characters size.
Valid sizes are 2-12, encoded as 23456789 ;< characters.

%w: prints a 16 bit character (sprintf3 only)

Return value
Total written characters count, excluding string termination character.

48

sprintf3

Formats a text string. 16bits fix character format.

Syntax

ushort sprintf3(
ushort palette, Palette number to encode characters with (4 bits)
ushort bank, Fix “bank” (character code MSB (4 bits))
char *dest, Pointer to destination buffer
char *format, Pointer to format string (standard 8 bit characters format)
...) Extra arguments

Explanation

Will process the format string and arguments, writing the result into the dest buffer.

Input format string is standard 8bits encoding. Output string is 16bits fix format encoding, using
provided palette and bank.

This function is equivalent to sprintf2, aside the different output format.

Available format tags: see sprintf2.

Return value
Total written characters count, excluding string termination character.

49

fixPrint, fixPrint2, fixPrint3, fixPrint4

Displays a character string on the fix layer.

Syntax

void fixPrint(

ushort x, X opsition on the fix layer

ushort y, Y opsition on the fix layer

ushort pal, Palette # to use

ushort bank, Fix characer “bank” (character MSB, 4 bits)
char *buf) String to print (8bit character format)

void fixPrint2(

ushort x, X opsition on the fix layer

ushort y, Y opsition on the fix layer

ushort pal, Palette # to use

ushort bank, Fix characer “bank” (character MSB, 4 bits)
char *buf) String to print (8bit character format)

void fixPrint3(

ushort X, X opsition on the fix layer

ushort y, Y opsition on the fix layer

ushort pal, Palette mod (will be added to character palette in string)
char *buf) String to print (16bit character format)

void fixPrint4(

ushort x, X opsition on the fix layer
ushort y, Y opsition on the fix layer
ushort pal, Palette mod (will be added to character palette in string)
char *buf) String to print (16bit character format)
Explanation

Will print the supplied 8/16bit characters string to the fix layer, using supplied coordinates, palette and/or
characters bank.

Functions are not Vblank synced and will print the text immediately during active display. It is therefore
advised to use carefuly and/or only for debug messages purpose.

fixPrint2 is an IRQ safe version of fixPrint.
fixPrint4 is an IRQ safe version of fixPrint3.

Return value
N/A

50

fixPrintf, fixPrintf1, fixPrintf2, fixPrintf3

Formats and text string and displays it on fix layer.

Syntax

void fixPrintf(
ushort x,
ushort y,
ushort pal,
ushort bank,
char *format,

)
void fixPrintf1(

)
void fixPrintf2(

)

void fixPrintf3(
ushort x,
ushort y,
ushort pal,
ushort bank,
char *buffer,
char *format,

...)

* Same as fixPrintf *

* Same as fixPrintf *

Explanation

Palette number to encode characters with (4 bits)

Fix “bank” (character code MSB (4 bits))

Pointer to destination buffer

Pointer to format string (standard 8 bit characters format)
Format string pointer

Extra arguments

Palette number to encode characters with (4 bits)

Fix “bank” (character code MSB (4 bits))

Pointer to destination buffer

Pointer to format string (standard 8 bit characters format)
Buffer pointer for formatted string (16bits format)

Format string pointer (8bit format)

Extra arguments

Will process the format string and arguments, displaying the result on the fix layer.

Available format tags: see sprintf2.

fixPrintf: standard legacy function from the original neoDev archive.
fixPrintf1: Similar to fixPrintf, but internally using the faster sprintf2.
fixPrintf2: Similar to fixPrintf1, but using the IRQ safe fixPrint2 for display.

fixPrintf3: Uses the supplied buffer to store the resulting formatted 16bits string, and adds display

command to the FIXJOBS buffer. Display is Vblank synced.

Return value
N/A

51

Pictures components

picture

Runtime handler for a picture.

Syntax

typedef struct picture {
ushort baseSprite;
ushort basePalette;
short posX;
short posY;
ushort currentFlip;
picturelnfo* info;

} picture;

Explanation

Base sprite # used for this picture

Base palette # used for this picture

Current position, X axis

Current position, Y axis

Current flip mode.

Pointer to the picturelnfo struct of this picture

This is the base structure the library uses to handle picture type elements.
Has to be allocated in the ram section of your code.

As operation on this datatype is managed by the library, it is strongly advised to use as read only in your

code.

52

picturelnfo

Structure holding picture information.

Syntax
typedef struct picturelnfo {
ushort stripSize; Bytesize of each sprite tilemap (basically tileHeight*4)
ushort tileWidth; Picture width, tiles unit
ushort tileHeight; Picture height, tiles unit
palettelnfo *palinfo; Pointer to related palettelnfo
ushort *maps[4]; Pointers to tilemaps (standard, flipX, flipY, flipXY)

} pictureinfo;

Explanation
picturelnfo structures are generated by the buildchar tool. Holds basic info about the picture.

Tilemap pointers are always valid. |IE if you did not request flipX for that picture in buildChar tool, maps[1]

will point to the standard map.
Picture tilemaps bytesize is (tileWidth*tileHeight)*4, or StripSize*tileWidth.

53

pictureHide

Hide a picture.
Syntax

void pictureHide(
picture* p) Pointer to picture structure to use

Explanation

Removes designated picture element from display.

Note: As hiding is done by altering Y position and sprite size, please be aware that changing Y pos of
designated picture will revert it back to visible.

Return value
N/A

54

picturelnit

Initialize a picture structure for use.

Syntax
void picturelnit(
picture* p, Pointer to picture handler to use
picturelnfo* pi, Pointer to picturelnfo structure
ushort baseSprite, Base sprite # to use
ushort basePalette, Base palette # to use
short posX, Picture initial X position
short posY, Picture initial Y position
ushort flip) Picture initial flip mode
Explanation

Initialize and prepare a picture element for use.
Picture will be set up with provided initial position/flip.

Return value
N/A

55

pictureMove

Updates position of a picture entity.

Syntax

void pictureMove(
picture* p, Pointer to picture handler to use
short shiftX, X axis offset
short shiftY) Y axis offset

Explanation
Change picture screen position.
New position is determined relatively to current position (new pos= current pos + shift).

Return value
N/A

56

pictureSetFlip

Sets flip mode of a picture entity.

Syntax

void pictureSetFlip(
picture* p, Pointer to picture handler to use
ushort flip) Desired flip mode

Explanation

Change picture flip mode.
Flip modes most be specified in your chardata.xml file for the buildchar tool to make them available.
Will default to base orientation if requested flip mode isn’t available.

Return value
N/A

57

pictureSetPos

Sets position of a picture entity.

Syntax

void pictureSetPos(
picture* p,
short toX,
short toY)

Explanation
Change picture screen position.

Position is set to supplied values.

Return value
N/A

Pointer to picture handler to use
New X position
New Y position

58

pictureShow

Show a picture entity.

Syntax
void pictureShow(
picture*p) Pointer to picture handler to use

Explanation
Put back a previously hidden picture on display.
Picture will be displayed at latest set position with latest set flip.

Return value
N/A

59

Scrollers components

scroller

Runtime handler for a scroller.

Syntax
typedef struct scroller {
ushort baseSprite; Base sprite # used for this scroller
ushort basePalette; Base palette # used for this scroller
ushort scriPosX; Current scroll index, X axis
ushort scrlPosY; Current scroll index, Y axis
scrollerinfo* info; Pointer to the scrollerinfo struct of this scroller
ushort config[32]; Scroller configuration data - internal use
} scroller;
Explanation

This is the base structure the library uses to handle scroller type elements.
Has to be allocated in the ram section of your code.

As operation on this datatype is managed by the library, it is strongly advised to use as read only in your
code.

60

scrollerinfo

Structure holding scroller information.

Syntax

typedef struct scrollerinfo {
ushort stripSize;
ushort sprHeight;
ushort mapWidth;
ushort mapHeight;
palettelnfo *palinfo;
colorStreaminfo *csinfo;
ushort *strips[0];

} scrollerinfo;

Explanation

Bytesize of each sprite tilemap (basically mapHeight*4)
Required sprite height to use (max 32)

Scroller width, tiles unit

Scroller height, tiles unit

Pointer to related palettelnfo

Pointer to related colorStreaminfo

Tilemap data (size varies)

scrollerinfo structures are generated by the buildchar tool. Holds basic info about the scroller.

Actual map data size (ushort) is (mapWidth*mapHeight)*2.

Member csinfo wil be 9x00000000 if there is no colorStream related to the scroller.

61

scrollerlnit

Initialize a Scroller entity for use.

Syntax
void scrollerinit(
scroller* s, Pointer to scroller handler to use
scrollerinfo* si, Pointer to scrollerinfo structure
ushort baseSprite, Base sprite # to use
ushort basePalette, Base palette # to use
short posX, Scroller initial X position
short posY) Scroller initial Y position
Explanation

Initialize and prepare a scroller handler for use.
scroller will be set up with provided initial scroll positions.

Return value
N/A

62

scrollerSetPos

Initialize a scroller handler for use.

Syntax

void scrollerinit(
scroller* s, Pointer to scroller handler
short toX, Scroller X position
short toY) Scroller Y position

Explanation
Sets scrolling position of designated scroller handler.

Return value
N/A

63

Animated sprites components

aSprite

Runtime handler for an animated sprite.

Syntax
typedef struct aSprite {

ushort baseSprite;
ushort basePalette;
short posX;

short posY;

ushort animiD;

ushort currentAnim;
ushort stepNum;
animStep* anims;
animStep” steps;
animStep* currentStep;
sprFrame* currentFrame;
uint counter;

ushort repeats;

ushort tileWidth;
ushort currentFlip;
ushort flags;

Base sprite # used for this animated sprite
Base palette # used for this animated sprite
Animated sprite current X position
Animated sprite current Y position

ID of last requested animation

ID of current animation

Current step number

Pointer to animations block

Pointer to steps block of current animation
Pointer to current step data

Pointer to current frame data

Internal frame update counter

Number of repeats done

Width of current frame, tiles unit

Current flip mode

Flags

} aSprite;

Explanation

This is the base structure the library uses to handle animated sprites elements.

Has to be allocated in the ram section of your code.

As operation on this datatype is managed by the library, it is strongly advised to use as read only in your

code.

When animation has reached its end (when applicable), counter value will change to Oxffffffff.

Notes:

.currentFlip format is as follows:

15-2 1

0

00000000000000 Vertical flip

Horizontal flip

Related defines:
FLIP_NONE (0)

FLIP_X (1)
FLIP_Y (2)
FLIP_XY (3)

FLIP_BOTH (3)

64

.flags format is as follows:

15-8 7

6

5-2

1

00000000

No display

Strict coords

0000

Flipped

Moved

Related defines:

AS_FLAGS_DEFAULT
AS_FLAG_MOVED
AS_FLAG_FLIPPED
AS_FLAG_STD_COORDS
AS_FLAG_STRICT_COORDS
AS_FLAG_DISPLAY
AS_FLAG_NODISPLAY

AS_MASK_MOVED
AS_MASK_FLIPPED
AS_MASK_MOVED_FLIPPED
AS_MASK_STRICT_COORDS
AS_MASK_NODISPLAY

(0x0000)
(0x0001)
(0x0002)
(0x0000)
(0x0040)
(0x0000)
(0x0080)

(oxfffe)
(oxfffd)
(oxfffc)
(oxffbf)
(oxff7f)

Moved / Flipped flags are only relevant when using allocated sprite mode.

65

spritelnfo, animStep, sprFrame

Structures holding animated sprites informations.

Syntax
typedef struct spritelnfo {
ushort frameCount; Total number of frames
ushort maxWidth; Maximum width, tiles unit (width of the largest frame)
palettelnfo *palinfo; Pointer to related palettelnfo
animStep **anims; Pointer array to animations
sprFrame frames|[O]; sprFrames array
} spriteinfo;

typedef struct animStep {

sprFrame *frame; Pointer to frame info
short shiftX; Frame X displacement from origin
short shiftY; Frame Y displacement from origin
ushort duration; Number of frame to display
} animStep;
typedef struct sprFrame {
ushort tileWidth; Frame width, tiles unit
ushort tileHeight; Frame height, tiles unit.
ushort stripSize; Bytesize of each sprite tilemap (basically tileHeight*4)
ushort *“maps[4]; Pointers to frame tilemaps (standard, flipX, flipY, flipXY)
} sprFrame;
Explanation

spritelnfo, animStep and sprFrame structures are generated by the buildchar and animator tools.
Holds infos about animated sprite frames and animations.

Frame tilemap pointers are always valid. IE if you did not request flipX for that sprite in the buildchar
tool, maps[1] will point to the standard map.

Frame tilemaps size (ushort count) are (tileWidth*tileHeight)*2.

66

aSpriteAnimate

Performs animation updates on an aSprite entity.

Syntax
void aSpriteAnimate(
aSprite* as) Pointer to aSprite handler to use

Explanation

Updates the aSprite handler animation.

Will apply position/flip/animation changes and queue required commands into draw buffers for update
next VBlank.

This function must be called every frame for each animated sprite for proper animation.

Note: this function is for allocated sprites mode, See spritePoolDrawList for sprite pool use.

Return value
N/A

67

aSpriteHide

Hides an aSprite entity (macro).

Syntax
void aSpriteHide(
aSprite* as) Pointer to aSprite handler to use

Explanation

Flag the designated aSprite as no display.

When flagged as no display, animated sprites will no longer be displayed. This allows to keep animating
an offscreen/hidden object without having to display it.

Note: If the aSprite is currently used in allocated mode, you must manually clear the sprites used by the
current frame => clearSprites(as->baseSprite, as->tileWidth);

Return value
N/A

68

aSpritelnit

Initialize an aSprite entity for use.

Syntax

void aSpritelnit(
aSprite* as,
spritelnfo* si,
ushort baseSprite,
ushort basePalette,
short posX,
short posY,
ushort anim,
ushort flip
ushort flags)

Explanation

Pointer to aSprite handler to use
Pointer to spritelnfo structure
Base sprite # to use

Base palette # to use

aSprite initial X position

aSprite initial Y position

aSprite initial animation sequence
aSprite initial flip mode

aSprite initial flags

Initialize and prepare an aSprite handler for use.

aSprite will be set up with provided initial position, animation, flip mode and flags.

This function will not push frame to display, a call to aSpriteAnimate / spritePoolDrawList is required
after aSpritelnit to push initial frame on display upon next VBIank.

Return value
N/A

69

aSpriteMove

Updates position of an aSprite entity.

Syntax

void aSpriteMove(
aSprite* as, Pointer to aSprite handler
short shiftX, X axis offset
short shiftY) Y axis offset

Explanation

Change aSprite handler screen position.

New position is determined relatively to current position (new pos= current pos + shift).

Will not update the display position directly, use aSpriteAnimate / spritePoolDrawList afterward to
apply changes.

Note: When using sprite pools, you can freely increase or decrease the aSprite .posX and .posY
fields, without the need of this function.

Return value
N/A

70

aSpriteSetAnim, aSpriteSetAnim2

Sets animation for an aSprite entity.

Syntax

void aSpriteSetAnim(
aSprite* as, Pointer to aSprite handler
ushort anim) Animation ID

void aSpriteSetAnim2(

aSprite* as, Pointer to aSprite handler
ushort anim) Animation ID
Explanation

Change current animation.

Animation IDs are defines issued by the animator tool, see documentation for syntax.

Will not push frame to display, use aSpriteAnimate / spritePoolDrawList afterward to apply changes.
If requesting change to the animation sequence ID that is already running, nothing will be done.

About animation links:

When using linked animations (ie A > B > C (loop)) system will remember “A” as last requested animation
ID.

This means if said animated sprite ran long enough to reach animation “C”, a request for animation 1D
“A” might be discarded as this is the last requence requested and running.

aSpriteSetAnim will discard animation requests of the same ID.

aSpriteSetAnim2 will set animation regardless of current state. If the same animation is already
running, it will be rewinded/reset.

Return value
N/A

71

aSpriteSetStep, aSpriteSetStep2

Sets step number for an aSprite entity.

Syntax
void aSpriteSetStep(
aSprite* as, Pointer to aSprite handler
ushort step) Step number
void aSpriteSetStep2(
aSprite* as, Pointer to aSprite handler
ushort step) Step number
Explanation

Moves current animation of the provided aSprite handler to selected step number.

aSpriteSetStep will discard request if current step is the same as requested.

aSpriteSetStep2 will set step regardless of current state. If the same step is already displayed, step

timing will be reset.

Return value
N/A

72

aSpriteSetAnimStep, aSpriteSetAnimStep2

Sets animation and step number for an aSprite entity.

Syntax
void aSpriteSetAnimStep(
aSprite* as, Pointer to aSprite handler
ushort anim, Animation ID
ushort step) Step number
void aSpriteSetAnimStep2(
aSprite* as, Pointer to aSprite handler
ushort anim, Animation ID
ushort step) Step number
Explanation

Changes current animation of privided aSprite handler, running from the choosen step number.
Animating rules applied are the same as aSpriteSetAnim.
aSpriteSetAnimStep will discard request if current animation and step is the same as requested.

aSpriteSetAnimStep2 will set animation and step regardless of current state. Step timing will be reset
if parameters are same as current state.

Return value
N/A

73

aSpriteSetFlip

Sets flip mode of an aSprite entity.

Syntax
void aSpriteSetFlip(
aSprite* as, Pointer to aSprite handler
ushort flip) Desired flip mode
Explanation

Change aSprite handler flip mode.
Flip modes most be specified in your chardata.xml file for the buildchar tool to make them available.
Will default to base orientation if requested flip mode isn’t available.

Note: When using sprite pools, you can freely set requested flip mode directly into the aSprite
.currentF1lip field, without the need of this function.

Return value
N/A

74

aSpriteSetPos

Sets position of an aSprite entity.

Syntax

void aSpriteSetPos(
aSprite* as, Pointer to aSprite handler
short newX, New X position
short newY) New Y position

Explanation

Change aSprite handler screen position.

Will not update the display position directly, use aSpriteAnimate / spritePoolDrawList afterward to
apply changes.

Note: When using sprite pools, you can freely set coordinates directly into the aSprite .posX and
.posY fields, without the need of this function.

Return value
N/A

75

aSpriteShow

Reverts an hidden aSprite entity to visible. (macro).

Syntax
void aSpriteShow(
aSprite* as) Pointer to aSprite handler

Explanation
Removes the no display flag from the designated aSprite.

Returns the aSprite to its normal state, allowing it to be displayed again.

Has no effect if aSprite handler is already flaged as visible.

Return value
N/A

76

Sprite Pools components

spritePool

Runtime handler for a sprite pool.

Syntax

typedef struct spritePool {
ushort poolStart; Fist sprite # to be used for this sprite pool
ushort poolEnd; Last sprite # to be used for this sprite pool
ushort poolSize; Sprite pool size
ushort way; Current draw direction
ushort currentUp; Current spr index - internal use
ushort currentDown; Current spr index - internal use

} spritePool;

Explanation

This is the base structure the library uses to handle sprite pools elements.
Has to be allocated in the ram section of your code.

As operation on this datatype is managed by the library, it is advised to manipulate only using provided

functions.

Related defines:
WAY_UP (0)
WAY_DOWN (1)

77

spritePoolClose

Finalize sprite pool operations for display.

Syntax
ushort spritePoolClose(
spritePool *sp) Pointer to spritePool handler

Explanation

Prepares a spritePool for next VBlank.

Needs to be called before each VBIank, will switch pool direction and queue the necessary sprite clears
for correct display.

Note: Sprite pool passed to this function is not to be used before next Vblank has occurred.

Return value
Will return 1 when draw operations exceeded total pool size, 0 otherwise.

78

spritePoolDrawList, spritePoolDrawList2

Draws the supplied animated sprites list into sprite pool.

Syntax

void spritePoolDrawList(
spritePool *sp Pointer to spritePool handler
void *list) Pointer to draw list

void spritePoolDrawList2(

spritePool *sp Pointer to spritePool handler
void *list) Pointer to draw list
Explanation

Utilize the supplied spritePool to render the aSprite entities in the supplied list.
This function takes care of updating the aSprite animation state, then display the updated entity.

Notes: User must supply a list pointer according to the current direction of the sprite pool :
0 WAY_UP: list must point to the first item, list will be read upward until null is found
0 WAY_DOWN: list must point to the last+1 element, list will be read downward until null is
found

SpritePoolDrawList isn’'t IRQ safe.
SpritePoolDrawList2 is an IRQ safe variant of spritePoolDrawList.

Return value
N/A

79

spritePoollnit

Initialize the supplied sprite pool handler.

Syntax

void spritePoollnit(
spritePool *sp, Pointer to spritePool handler
ushort baseSprite, Startig sprite of sprite pool
ushort poolSize, Sprite pool size
bool clearSprites) Sprites clear flag

Explanation
Sets up the supplied spritePool handler for use.

If clearSprites is set to ture, spritePoollnit will buffer a sprite clear of sprites baseSprite to

baseSprite+poolSize-1.

Return value
N/A

80

Color steam components

colorStream

Runtime handler for a color stream.

Syntax

typedef struct colorStream {
ushort basePalette; Base palette # used for this color stream
ushort position; Holds current position in stream — internal use
colorStreaminfo *info; Pointer to related colorStreaminfo
colorStreamJob *fwJob; Pointer to next job, forward way — internal use
colorStreamJob *bwJob; Pointer to next job, backward way — internal use

} colorStream;

Explanation
This is the base structure the library uses to handle color streams elements.
Has to be allocated in the ram section of your code.

As operation on this datatype is managed by the library, it is strongly advised to use as read only in your
code.

81

colorStreaminfo, colorStreamJob

Structures holding color stream informations and data.

Syntax
typedef struct colorStreaminfo {
ushort palSlots; Number of palettes required to operate the colorStream
void *startConfig; Pointer to start configuration data
void *endConfig; Pointer to end configuration data
void *fwData; Pointer to forward stream data
void *fwDataEnd; Pointer to end of forward stream data
void *bwData; Pointer to backward stream data
void *bwDataEnd; Pointer to end of backward stream data

} colorStreaminfo;

typedef struct colorStreamJob {
ushort coord,; Stream update coordinate
void *data; Pointer to update data

} colorStreamJob;

Explanation
colorStreaminfo and colorStreamJob structures are generated by the buildchar tool. Holds
informations about color streams.

Configurations and jobs format are as follows:
.word ©x0012 ; palette slot #
.long ©x00123456 ; pointer to palette data

.word Oxffff ; end marker

82

colorStreamlinit

Initialize the supplied color stream handler.

Syntax

void colorStreamlnit(
colorStream *cs, Pointer to colorStream handler
colorStreaminfo *csi, Pointer to related colorStreaminfo structure
ushort basePalette, Base palette # to use
ushort config) Start configuration

Explanation
Sets up the supplied colorStream handler for use.

Will buffer the required palette jobs to set up the requested start config.
Related defines:
COLORSTREAM_STARTCONFIG (0)
COLORSTREAM_ENDCONFIG (1)

Return value
N/A

83

colorStreamSetPos

Updates the stream position of supplied color stream handler.

Syntax
void colorStreamSetPos(
colorStream *cs, Pointer to colorStream handler
ushort pos) New stream position
Explanation

Advances or rewinds the supplied colorStream to the requested position.

colorStreamSetPos will buffer the required palette commands to update the color stream up to the
designated position.

Return value
N/A

84

